Antibodies to Polymorphic Invasion-Inhibitory and Non-Inhibitory Epitopes of Plasmodium falciparum Apical Membrane Antigen 1 in Human Malaria
نویسندگان
چکیده
BACKGROUND Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1. METHODOLOGY/FINDINGS We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies. CONCLUSIONS/SIGNIFICANCE Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1.
منابع مشابه
Allele specificity of naturally acquired antibody responses against Plasmodium falciparum apical membrane antigen 1.
Antibody responses against proteins located on the surface or in the apical organelles of merozoites are presumed to be important components of naturally acquired protective immune responses against the malaria parasite Plasmodium falciparum. However, many merozoite antigens are highly polymorphic, and antibodies induced against one particular allelic form might not be effective in controlling ...
متن کاملDefining the Antigenic Diversity of Plasmodium falciparum Apical Membrane Antigen 1 and the Requirements for a Multi-Allele Vaccine against Malaria
Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic d...
متن کاملCrystal Structure of Plasmodium knowlesi Apical Membrane Antigen 1 and Its Complex with an Invasion-Inhibitory Monoclonal Antibody
The malaria parasite Plasmodium knowlesi, previously associated only with infection of macaques, is now known to infect humans as well and has become a significant public health problem in Southeast Asia. This species should therefore be targeted in vaccine and therapeutic strategies against human malaria. Apical Membrane Antigen 1 (AMA1), which plays a role in Plasmodium merozoite invasion of ...
متن کاملSpecificity of the protective antibody response to apical membrane antigen 1.
Apical membrane antigen 1 (AMA1) is considered one of the leading candidates for inclusion in a vaccine against blood stages of Plasmodium falciparum. Although the ama1 gene is relatively conserved compared to those for some other potential vaccine components, numerous point mutations have resulted in amino acid substitutions at many sites in the polypeptide. The polymorphisms in AMA1 have been...
متن کاملThe most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody.
Apical membrane antigen 1 (AMA1) is currently one of the leading malarial vaccine candidates. Anti-AMA1 antibodies can inhibit the invasion of erythrocytes by Plasmodium merozoites and prevent the multiplication of blood-stage parasites. Here we describe an anti-AMA1 monoclonal antibody (MAb 1F9) that inhibits the invasion of Plasmodium falciparum parasites in vitro. We show that both reactivit...
متن کامل